$2^{\text {nd }}$ year, winter semester $1^{\text {st }}$ week 1.10.-5.10.2006

REPETITION

SELECTED TASKS of summer semester

REPETITION

SELECTED TASKS of summer semester

1. Nondisjunction in Down, Turner, and Klinefelter syndrome
2. Evaluation of karyotype with aberration 3. Linkage

Introduction to POPULATION GENETICS

4. Estimates of gene frequencies
5. Nondisjunction in Down, Turner, and Klinefelter syndrome
p. 80/Task 6e, a, b (preserve this order)

Remaining c) and d) - syndromes XXX and supermale - home work, as selfstudy!
N.B.: Fill in all possibilities of the nondisjunction events for a particular syndrome could originate. This is asked in the text, exactly as in the final exam test.

General schedule of disjunction of chromosomes in the meiosis
normal normal gamete of gamete the second parent

$$
\mathrm{N}^{\circ} . \mathrm{N}^{\circ} .
$$

zygote
Normal karyotype

General schedule of nondisjunction

(principle, example) $\begin{aligned} & \text { aberrant } \\ & \text { gamete }\end{aligned} \begin{gathered}\text { normal gamete of } \\ \text { the second parent }\end{gathered}$

6e) Down syndrome (simple trisomy)
Nondisjunction in the meiosis I in the father or in the mother
aberrant gamete
normal gamete of the second parent (monosomic)

$$
\begin{aligned}
& 47, X X,+21 \\
& 47, X Y,+21
\end{aligned}
$$

6e) Down syndrome (simple trisomy) in the father or in the mother
aberrant gamete
normal gamete of the second parent (monosomic)
 meiosis I
aberrant gamete
mother's normal
gamete
(monosomic)

6a) Turner syndrome
Nondisjunction in the maternal meiosis I
aberrant gamete
father's normal gamete (monosomic)

6a) Turner syndrome
Nondisjunction in the paternal
meiosis II

I! or:

mother's normal gamete (monosomic)

zygote
45,X

6a) Turner syndrome meiosis II
aberrant gamete
father's normal gamete (monosomic)

6b) Klinefelter syndrome
Nondisjunction in the paternal meiosis I
aberrant gamete

> mother's normal gamete (monosomic)

6b) Klinefelter syndrome meiosis I

6b) Klinefelter syndrome
father's normal
aberrant gamete

2. Evaluation of karyotype with aberration
a) Task 9a, b/p. 82
b) Task 16/ p. 88

c) Segregation of chromosomes to gametes
d) m. Down - conclusion of recurrent risk

Karyotype evaluation - General procedure:

- total number of chromosomes (46, 45, 47, other)
- heterochromosomal complement (XX, XY, other)
- completeness of pairs (disomy, monosomy)
- surplus (redundant) chromosomes (trisomy, markers)
- structural aberrations

a) Task 9a, b/ p. 82
 Solution: Turner syndrome

11
 -4

+

13
H

14

17
$3+1$
18
14
17
4π

$+3$

4
$\# 4$

The difference between cytogenetic and

clinical diagnosis

Solution:Turner syndrome Formula: 45,X

Clinical diagnosis
 Cytogenetic diagnosis

Not all individuals expressing the symptoms of a concrete (here e.g. Turner) syndrome have to have the same cytogenetic finding (formula, annotation, diagnosis). But all individuals sharing the same cytogenetic diagnosis usually express the same complex phenotype (syndrome, disease).

c) segregation of chromosomes to gametes ${ }^{20}$ in previous individual

d) m. Down - conclusion of reccurent risk
(expected chromosomal findings in parents and reccurent risk in dependence on finding in m. Down affected individual)

MORBUS DOWN

PROBAND	PARENTS		RISK
47, $\mathrm{X}^{\mathrm{X}} /{ }_{\mathrm{Y}},+21$	46, $\mathrm{X}^{\mathrm{X}} \mathrm{I}_{\mathrm{Y}}$	$46, \mathrm{X}^{\mathrm{x}} \mathrm{Y}_{\mathrm{Y}}$	> THAN POPULATION dependence on maternal age
46, $\mathrm{X}^{\mathrm{X}} /{ }_{Y}, \operatorname{der}(21 ; 21),+21$	$45, X^{\mathrm{X}} /_{Y}$, $\operatorname{der}(21 ; 21)$	$46, X^{x} /_{Y}$	100\% THEORETICAL 100\% EMPIRICAL
$\begin{aligned} & 46, X^{X} /_{Y}, \operatorname{der}(\mathrm{D} ; 21),+21 \\ & 46, \mathrm{X}^{\mathrm{X}} / \mathrm{Y}+21, \operatorname{der}(21 ; 22) \end{aligned}$	$\begin{aligned} & 45, X^{X} /_{Y}, \operatorname{der}(\mathrm{D} ; 21) \\ & 45, \mathrm{X}^{\mathrm{X}} /_{\mathrm{Y}}, \operatorname{der}(21 ; 22) \end{aligned}$	46, $\mathrm{X}^{\mathrm{X}} \mathrm{I}_{\mathrm{Y}}$	33,3\% THEORETICAL EMPIRICAL: cca 5\% - father (carrier) cca 15\% - mother (carrier)
$\begin{aligned} & 46, X^{X} /_{Y}, \operatorname{der}(D ; 21),+21 \\ & 46, X^{X} /_{Y},+21, \operatorname{der}(21 ; G) \end{aligned}$	46, $\mathrm{X}^{\mathrm{X}} \mathrm{I}_{\mathrm{Y}}$	46, $\mathrm{X}^{\mathrm{X}} \mathrm{I}_{\mathrm{Y}}$	NEW MUTATION NONPATERNITY
47, $\mathrm{X}^{\mathrm{X}} /{ }_{\mathrm{Y}},+21$	47, $\mathrm{X}^{\mathrm{X}} /_{Y},+21 / 46, \mathrm{X}^{\mathrm{X}} /_{Y}$	46, $\mathrm{X}^{\mathrm{X}} \mathrm{I}_{\mathrm{Y}}$	MOSAICISM - depends on ratio of the cell lines with normal and aberrant number of chromosome 21

3. Linkage

a) Task 2/p. 99 - back-cross in trans configuration, gametogenesis and phenotype frequencies
b) Task 10/p. 104 - linkage in genealogy (nail-patella sy)

Demonstration:

back-cross in trans phase (corresponds to Task 2/p. 99), repetition of production of gametes and phenotype frequencies

Genes: Traits:
B "colour"
(smooth)
(deep)
(wrinkled)
(pale)

double heterozygote
 (F1 hybrid)

Phenotype
Genotype
$A B$

Ab/aB
recessive
homozygote
$a b$ \#

Gametes

Ab, aB
(original)
$A B, a b$
(recombinants)

Distance $\mathrm{p}=$	Genotype Phenotype	$\mathrm{AB} / \mathrm{ab}$	Ab/ab	$\mathrm{aB} / \mathrm{ab}$	ab/ab
0 cM	frequency	0	0,5	0,5	0
20 cM	frequency	0,1	0,4	0,4	0,1
50 cM	frequency	0,25	0,25	0,25	0,25

Back - cross (Bc) - trans configuration (repulsion)

double heterozygote (F1 hybrid)
Phenotype
Genotype
Gametes
$A B$
AblaB

Ab, aB	AB, ab
(or ginal),	(recombiran:s)

recessive homozygote ab

$a b / a b$ ab
a)

Distance $\mathrm{p}=$	Genotype Phenotype	AB/ab	$\begin{gathered} \mathrm{Ab} / \mathrm{ab} \\ \text { tat. } \end{gathered}$	aB/ab	ab/ab -
0 cM	frequency	0	0.5	0,5	0
20 cM	frequency	0,1	0,4	0.4	0,1
50 cM	frequency	0,25	0,25	0,25	0,25

b) Task 10/p. 104 - linkage in genealogy (nail-patella sy)

Fig. №. VII/2

Answers:

a) AD (give alleles names, e.g. NPS ${ }^{m u t}$ a NPS^{+}),
b) yes (Note: localization known today, 9q34),
c) homologous chromosomes (haplotypes) in grand-father $1 / 1$ are $0 \mathrm{NPS}^{+} / 0 \mathrm{NPS}^{+}$, and in grand-mother I/2 are B NPSmut / 0 NPS ${ }^{+}$,
d) recombination is present in sons II/5, II/8 a II/14, as well as in grand-daughter III/3,
e) recombination ratio is $4 / 16=0,25$, i.e. 25% of recombinations between the genes,
f) yes - recombination present in III/3 originated in meiosis in man II/3.

4. Introduction to population genetics

 - estimates of gene frequenciesa) Task 1/p. 139 - frequencies of alleles in MN system
b) Task 4/p. 140 - estimates of frequencies of deleterious (recessive) alleles

The lecture has taken place in the last semester see short introductory text and formulas [3] and [4] on pp. 138 and 139.

Castle-Hardy-Weinberg law

$p_{(A A)}^{2}+2 p q_{(A a)}+q_{(a a)}^{2}=1$

Applied on panmictic population under the assumption of limiting conditions

Castle-Hardy-Weinberg law

Basic relation for a system with two alleles in a given gene

$$
\begin{aligned}
p_{(A)}+q_{(a)} & =1 \\
p_{(A)} & =1-q_{(a)}
\end{aligned}
$$

approximation
$2 p q_{(A a)} \doteq 2 q$, if $p_{(A)}$ approaches 1
a) Task 1/p. 139 - frequencies of alleles in MN system

Phenotype	Number of persons
M	406
MN	744
N	332

Task 1/p. 139 - frequencies of alleles in MN system

Solution:

- direct calculation of the frequency of one of alleles according to formula [3] on p. 138
$p_{(A)}=\frac{2 \times \text { number of homozygotes }(A A)+\text { number of heterozygotes }(A a)}{2 \times \text { number of all individuals in the sample }}$
- Calculation of the frequency of the second allele $q_{(a)}$ as addition to 1.

Task 1/p. 139 - frequencies of alleles in MN system

phenotype	Number of		
	persons	alleles M	alleles N
M	406	812	0
MN	744	744	744
N	332	0	664
Total	1482	1556	1408

$$
p=\frac{2 \times 406+744}{2 \times 1482}=\frac{1556}{2964}=0,525
$$

$$
q=1-p=0,475
$$

Task 4/p. 140 - estimates of frequencies of deleterious (recessive) alleles

Disease	Abbrev.	population frequency
phenylketonuria	PKU	$1 / 8100$
cystic fibrosis (mucoviscidosis)	CF	$1 / 2500$

Task 4/p. 140 - estimates of frequencies of deleterious (recessive) alleles

Solution: estimate calculated according to formula [4] on p. 139 (top),
$q=\sqrt{\frac{\text { number of recessive homozygotes }}{\text { number of all individuals in the sample }}}=$
$=\sqrt{\text { frequency in population }}$

Task 4/p. 140 - estimates of frequencies of deleterious (recessive) alleles

disease	Frequency in population	estimate		
	q	$p=1-q$	$2 p q \doteq 2 q$	
PKU	$1 / 8100$	$1 / 90$	$89 / 90 \doteq 1$	$2 \times 1 \times 1 / 90$ $=1 / 45$
CF	$1 / 2500$	$1 / 50$	$49 / 50 \doteq 1$	$2 \times 1 \times 1 / 50$ $=1 / 25$

Home study of population genetics required - no other lecture with this topic will be.

