# $2^{\text {nd }}$ year, winter semester <br> $1^{\text {st }}$ week <br> October 14 - 16, 2008 

## POPULATION GENETICS I.

The lecture has taken place in the last semester - see short introductory text and formulas [3] and [4] on pp. 138 and 139.

## 1. Introduction to population genetics <br> - estimates of gene frequencies

a) Task 1/p. 139 - frequencies of alleles in MN blood group system
b) Task 3/p. 139 - gene frequencies in the Rh blood group system
c) Task $2 / \mathrm{p} .139$ - gene frequencies in the dominant system ( $T, t$ )
d) Task 4/p. 140 - estimates of frequencies of deleterious (recessive) alleles

## Castle-Hardy-Weinberg law

$p_{(A A)}^{2}+2 p q_{(A a)}+q_{(a a)}^{2}=1$

Applied on panmictic population under the assumption of limiting conditions

## Castle-Hardy-Weinberg law

## Basic relation for a system with two alleles in a given gene

$$
\begin{aligned}
p_{(A)}+q_{(a)} & =1 \\
p_{(A)} & =1-q_{(a)}
\end{aligned}
$$

approximation
$2 p q_{(A a)} \doteq 2 q$, if $p_{(A)}$ approaches 1

Task 1/p. 139 - frequencies of alleles in MN blood group system

| Phenotype | Number of <br> persons |
| :---: | :---: |
| M | 406 |
| MN | 744 |
| N | 332 |

## Task 1/p. 139 - frequencies of alleles in MN blood group system

## Solution:

- direct calculation of the frequency of one of alleles according to formula [3] on p. 138

$$
p=\frac{2 \times \text { number of homozygotes }(A A)+\text { number of heterozygotes }(A a)}{2 \times \text { number of all individuals in the sample }}
$$

- Calculation of the frequency of the second allele as addition to 1.

Task 1/p. 139 - frequencies of alleles in MN system

| phenotype | Number of |  |  |
| :---: | :---: | :---: | :---: |
|  | persons | alleles M | alleles N |
| M | 406 | 812 | 0 |
| MN | 744 | 744 | 744 |
| N | 332 | 0 | 664 |
| Total | 1482 | 1556 | 1408 |

$$
p=\frac{2 \times 406+744}{2 \times 1482}=\frac{1556}{2964}=0.525 \quad q=1-p=0.475
$$

## Task 3/p. 139 - gene frequencies in the Rh blood group system

- In a population, $16 \%$ of persons were Rh negative (Rh-) - for better calculating, otherwise in Czech population it is 13.4 \%
- Rh- individuals ....... recesive homozygotes dd
- Rh+ individuals ....... homozygotes DD or heterozygotes Dd

Estimates: $\quad q_{(d d)}^{2}=0.16 \quad \square \quad \mathbf{q}_{(d)}=0.4$

$$
\begin{aligned}
& \mathrm{p}_{(D)}=1-\mathrm{q}=0.6 \\
& \mathrm{p}_{(D D)}^{2}=0.36 \\
& 2 \mathrm{pq}_{\left(D d^{\prime}\right)}=0.48
\end{aligned}
$$


b) $84 \%$; i.e. $p^{2}+2 p q$
c) $13.44 \%$; i.e. $0.16 \times 0.84=q^{2} \times\left(p^{2}+2 p q\right)$
d) $60 \%$; i.e. $p=0.6=\left(p^{2} q^{2}+p q^{3}\right) /\left(p^{2} q^{2}+2 p q^{3}+q^{4}\right)$
e) $36 \% ;$ i.e. $p^{2}=0.36=p^{2} q^{2} /\left(p^{2} q^{2}+2 p q^{3}+q^{4}\right)$

## Task 2a/p. 139 - Estimation of gene frequencies in the dominant system

30 \% of persons unable to recognize the bitter taste of PTC in a given population (non-tasters)


$$
\begin{aligned}
& q_{(t t)}^{2}=0.3 \quad \Rightarrow \quad q_{(t)}=\sqrt{0.3}=0.548 \\
& p_{(T)}=1-q=0.452 \\
& p_{(T T)}^{2}=0.205 \\
& 2 p q_{(T t)}=0.495
\end{aligned}
$$

Estimation of gene frequencies in two-allele polymorphism ( $T, t$ ) in the population sample of students
phenotyping of PTC tasting in students in the classroom: one drop of saturated solution of phenylthiocarbamide (PTC) on the tip of the tongue
non-tasters in the class
portion of non-tasters $\left[{ }^{2}{ }_{(t i), \text { class }}\right]=$
total of students in the class
frequency of recessive allele $\left[\mathbf{q}_{(t), \text { class }}\right]=\sqrt{\mathbf{q}_{(t), \text { class }}^{2}}$

$$
p_{(n), \text { class }}=1-q
$$

$\mathbf{p}_{(T T), \text { class }}^{2}$
$2 \mathrm{pq}_{(T), \text { class }}$

## Task 4/p. 140 - estimates of frequencies of deleterious (recessive) alleles

| Disease | Abbrev. | population <br> frequency |
| :---: | :---: | :---: |
| phenylketonuria | PKU | $1 / 8100$ |
| cystic fibrosis <br> (mucoviscidosis) | CF | $1 / 2500$ |

## Task 4/p. 140 - estimates of frequencies of deleterious (recessive) alleles

Solution: the estimate calculated according to formula [4] on p. 139 (top),
$q=\sqrt{\frac{\text { number of recessive homozygotes }}{\text { number of all individuals in the sample }}}=$
$=\sqrt{\text { frequency in population }}$

## Task 4/p. 140 - estimates of frequencies of deleterious (recessive) alleles

| disease | Frequency <br> in <br> population | estimate |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $q$ | $p=1-q$ | $2 p q \doteq 2 q$ |  |
| PKU | $1 / 8100$ | $1 / 90$ | $89 / 90 \doteq 1$ | $2 \times 1 \times 1 / 90$ <br> $=1 / 45$ |
| CF | $1 / 2500$ | $1 / 50$ | $49 / 50 \doteq 1$ | $2 \times 1 \times 1 / 50$ <br> $=1 / 25$ |

## 2. Selection against (recessive) homozygotes

Intensity of selection against genotype i (i.e. AA, Aa or aa)

$$
s_{i}=1-w_{i}
$$

$w_{i}$... fitness, average relative reproduction ability of the genotype I
$w_{i}=\frac{\text { average number of offspring of the genotype }[i]}{\text { average number of offspring of the genotype with maximal fertility }}$

|  | AA | Aa | aa | $\sum$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $p^{2}$ | $2 p q$ | $q^{2}$ | 1 |
| $s_{i}$ | 0 | 0 | $s$ |  |
| $w_{i}$ | 1 | 1 | $1-s$ |  |
|  | $p^{2}$ | $2 p q$ | $q^{2}(1-s)$ | $1-q^{2} s$ |

Gene frequency of recessive alelle a after one generation of selection of intensity $s$ :

$$
q^{\prime}=\frac{2 p q+2 q^{2}(1-s)}{2\left(1-q^{2} s\right)}=\frac{q(1-q s)}{1-q^{2} s}
$$

Intergenerational change of gene frequency as
consequence of selection of intensity $s$ :

$$
\Delta q=q^{\prime}-q=\frac{q(1-q s)}{\left(1-q^{2} s\right)}-q=\frac{-p q^{2} s}{1-q^{2} s}
$$

If $\Delta q=0 \Rightarrow$ gene frequency does not change $\Rightarrow$ polymorphism is stable $\Rightarrow$ thereafter must be :

$$
-p q^{2} s=0
$$

1. $p=0$ (population formed only by homozygotes aa)
2. $q^{2}=0$, i.e. $q=0$ (population formed only by homozygotes

AA)
3. $s=0$, (considered type of selection does not take place)

If $\Delta \boldsymbol{q} \neq \mathbf{0}$, gene frequencies change from generation to generation - population polymorphism is of transitional type
When $s=1$. it is a case of a system with recessive lethal effect

$$
q^{\prime}=\frac{q\left(1-q \Delta^{\prime}\right)}{1-q^{2} s^{1}}=\frac{q(1-q)}{1-q^{2}}=\frac{q(1-q)}{(1+q)(1-q)}=\frac{q}{1+q}
$$

After two generation of selection proceeding this way

$$
q^{\prime \prime}=\frac{q^{\prime}}{1+q^{\prime}}=\frac{\frac{q}{1+q}}{1+\frac{q}{1+q}}=\frac{\frac{q}{1+q}}{\frac{1+q+q}{1+q}}=\frac{q}{1+2 q}
$$

After three generations of lethal effect

$$
q^{\prime \prime \prime}=\frac{q}{1+3 q}
$$

## Selection by/against cystic fibrosis (mucoviscidosis)

 Task 6a,b/p. 142Extension of preceding consideration - after many ( $t$ ) generations of selection ( $t$-time)


$$
q_{(t)}=\frac{\boldsymbol{q}}{1+\boldsymbol{t q}}
$$

Arrangement of the formula

$$
\boldsymbol{t}=\frac{\boldsymbol{q}-\boldsymbol{q}_{t}}{\boldsymbol{q} \times \boldsymbol{q}_{t}}
$$

Calculation :

$$
t=\frac{q-q_{t}}{q \times q_{t}}=\frac{\frac{1}{50}-\frac{1}{2} \times \frac{1}{50}}{\frac{1}{50} \times \frac{1}{2} \times \frac{1}{50}}=50
$$

Answer a) : 50 generations
b) : $\mathbf{7 4 5 0}$ generations

## Selection by/against cystic fibrosis (mucoviscidosis)

 Task 6c/p. 142Other extension of initial consideration - before many ( $t$ ) generations of selection ( $t$-time)
$q_{0} \underset{t \text { generations }}{\rightleftarrows} q_{(t)}$

$$
q_{(t)}=\frac{q_{0}}{1+t q}
$$

Arrangement of the formula

$$
\boldsymbol{q}_{0}=\frac{\boldsymbol{q}_{(t)}}{1-\boldsymbol{t} \boldsymbol{q}_{(t)}}
$$

Calculation :

$$
q_{0}=\frac{q_{(t)}}{1-t q_{(t)}}=\frac{\frac{1}{50}}{1-\frac{49}{50}}=1
$$

Answer: the frequency was $1 \Rightarrow 49$ generations ago (ca

Paradoxical result can be commented e.i. as an inappropriate application
of the model

If, 49 generations ago (some time arround the years 900 to 1000), there has been formed the entire population (exactly according to the result $\mathrm{q}=1$ ) by recessive homozygotes,
which is i) a nonsense, because there have been no reports, that all people have suffered with CF at that time,
then ii) any selection itself could not change anything on that state.
3. Selection favouring heterozygotes - I

Task 7/p. 142

| Genotypes | $A A$ | $A a$ | $a a$ | $\Sigma$ |
| :---: | :---: | :---: | :---: | :---: |
| before | $p^{2}$ | $2 p q$ | $q^{2}$ | 1 |
| $s_{1}$ | $s_{1}$ | 0 | $s_{2}$ |  |
| $w_{1}$ | $1-s_{1}$ | 1 | $1-s_{2}$ |  |
| after | $p^{2}\left(1-s_{1}\right)$ | $2 p q$ | $q^{2}\left(1-s_{2}\right)$ | $1-p^{2} s_{1}-q^{2} s_{2}$ |

$$
\begin{aligned}
& q^{\prime}=\frac{2 p q+2 q^{2}\left(1-s_{2}\right)}{2\left(1-p^{2} s_{1}-q^{2} s_{2}\right)}=\frac{p q+q^{2}-q^{2} s_{2}}{1-p^{2} s_{1}-q^{2} s_{2}}= \\
& =\frac{q(p+q)-q^{2} s_{2}}{1-p^{2} s_{1}-q^{2} s_{2}}=\frac{q-q^{2} s_{2}}{1-p^{2} s_{1}-q^{2} s_{2}}=\frac{q\left(1-q s_{2}\right)}{1-p^{2} s_{1}-q^{2} s_{2}}
\end{aligned}
$$

Selection favouring heterozygotes - II Task 7/p. 142

$$
\begin{aligned}
\Delta q & =q^{\prime}-q=\frac{q\left(1-q s_{2}\right)}{1-p^{2} s_{1}-q^{2} s_{2}}-q= \\
& =\frac{q\left(1-q s_{2}\right)-q\left(1-p^{2} s_{1}-q^{2} s_{2}\right)}{1-p^{2} s_{1}-q^{2} s_{2}}= \\
& =\frac{q\left(1-q s_{2}-1+p^{2} s_{1}+q^{2} s_{2}\right)}{1-p^{2} s_{1}-q^{2} s_{2}}= \\
& =\frac{q\left(p^{2} s_{1}+q^{2} s_{2}-q s_{2}\right)}{1-p^{2} s_{1}-q^{2} s_{2}}=\frac{q\left(p^{2} s_{1}+q s_{2}(q-1)\right)}{1-p^{2} s_{1}-q^{2} s_{2}}= \\
& =\frac{q\left(p^{2} s_{1}-p q s_{2}\right)}{1-p^{2} s_{1}-q^{2} s_{2}}=\frac{p q\left(p s_{1}-q s_{2}\right)}{1-p^{2} s_{1}-q^{2} s_{2}}
\end{aligned}
$$

## Selection favouring heterozygotes - III

 Task 7/p. 142$$
\Delta q=q^{\prime}-q=\frac{p q\left(p s_{1}-q s_{2}\right)}{1-p^{2} s_{1}-q^{2} s_{2}}
$$

If $\Delta q=0 \Rightarrow$ gene frequency does not change $\Rightarrow$ polymorphism is stable $\Rightarrow$ thereafter must be :

$$
p q\left(p s_{1}-q s_{2}\right)=0
$$

1. $p=0$ (population formed only by homozygotes aa)
2. $\mathbf{q}=0$ (population formed only by homozygotes $\mathbf{A A}$ )
3. $p s_{1}-q s_{2}=0$, from it follows

$$
\begin{aligned}
(1-q) s_{1}-q s_{2}=s_{1}-q s_{1}-q s_{2}=s_{1}-q\left(s_{1}+s_{2}\right) & =0 \\
s_{1} & =q\left(s_{1}+s_{2}\right) \\
s_{1} /\left(s_{1}+s_{2}\right) & =q
\end{aligned}
$$

$$
\hat{q}=q_{\text {equil. }}=\frac{s_{1}}{s_{1}+s_{2}}=\frac{s_{A A}}{s_{A A}+s_{a a}}
$$

## Selection favouring heterozygotes - IV

 Task 8/pp. 143-144Sickle-cell anaemia as stable polymorphism by heterozygous advantage
a) Gene frequencies :

$$
\frac{2 \times 29+2993}{2 \times 12387}=0.123
$$

$$
p=1-q=1-0.123=0.877
$$

Selection favouring heterozygotes - V Task 8/pp. 143-144

| Genotype | AA | Aa | aa |
| :---: | :---: | :---: | :---: |
| Observed ( O ) | 9365 | 2993 | 29 |
| Expected ( E ) | 9523.87 | 2675.6 | 187.87 |
| Difference ( O - E ) | -158.87 | 317.4 | -158.87 |
| Relation ( O/E ) | 0.983 | 1.119 | 0.154 |

$$
\chi^{2}=174.9
$$

The population is not in C-H-W equilibrium

## Selection favouring heterozygotes - VI

Task 8/pp. 143-144
b) Estimation of values of selection coefficients

Relations O/E in the table represent reproduction ability of individuals with different genotypes

Fitness of $A A \quad w_{1}=0.983 / 1.119=0.879$
and aa $\quad w_{2}=0.154 / 1.119=0.138$
Selection coefficients

$$
\begin{aligned}
& s_{1}=1-w_{1}=1-0.879=0.121 \\
& s_{2}=1-w_{2}=1-0.138=0.862
\end{aligned}
$$

# Study of population genetics required - no other lecture with this topic will be. 

