

AUTOSOMAL DOMINANT INHERITANCE - AD

Characteristics:

- direct transmission from an affected parent to an affected child (does not skip generations)
- males and females are equally likely to be affected
- transmission from father to son

Examples:

- achondroplasia, brachydactyly
- polycystic kidney disease
- familial hypercholesterolemia
- dentinogenesis imperfecta, osteogenesis imperfecta
- dysostosis cleidocranialis

AUTOSOMAL RECESSIVE INHERITANCE - AR

Characteristics:

- the trait is often found in clusters of siblings but not in their parents and offspring
- males and females are equally affected
- parents could be relatives

Examples:

- cystic fibrosis
- phenylketonuria
- sickle cell anemia
- albinism

X-LINKED RECESSIVE INHERITANCE (GONOSOMAL RECESSIVE – GR)

Characteristics:

- males are much more likely to be affected
- affected males get the disease from their mothers healthy carriers
- no transmission from father to son
- transmission from an affected grandfather to his grandsons

Examples:

- haemophilia A, haemophilia B
- Duchenne muscular dystrophy
- color blindness
- anhidrotic ectodermal dysplasia

X-LINKED DOMINANT INHERITANCE (GONOSOMAL DOMINANT) - GD

Characteristics:

- direct transmission from generation to generation
- females are more likely to be affected (two X chromosomes)
- males are usually more severely affected than females

5

- no transmission from father to son

Examples:

- vitamin D-resistant rickets
- incontinentia pigmenti
- amelogenesis imperfecta

(X-linked)

Types of mating - Autosomal inheritance (*KrOt* p. 16/Task 3)

Genotypes	Genotypes of the progeny (%)			
of the couple	AA	Aa	aa	
$AA \times AA$	100			
$AA \times Aa$	50	50		Most
$AA \times aa$		100		important
$Aa \times Aa$	25	50	25	AR
$Aa \times aa$		50	50	AD
$aa \times aa$			100	

Phenotypedominantrecessive

Typical Autosomal Pedigrees (*KrOt* p. 17/Task 5b)

Typical Autosomal Pedigrees (KrOt p. 17/Task 5b)

Pedigree A is typical for (compatible with) **AD**

Risk for: III/6 is 50 % IV/1 is 50 % IV/2 is 0 %

Typical Autosomal Pedigrees (KrOt p. 17/Task 5b)

Pedigree B is typical for (compatible with) **AR**

Risk for: III/6 is 25 % IV/1 is \cong 0 % IV/2 is \cong 0 % **Brachydactyly - Autosomal Dominant Inheritance** in Pedigree (*KrOt* p. 17/Task 6)

- a) II/2 *Aa*, II/3 *aa*
- b) 50%
- c) 50%
- d) 25%

PKU - Autosomal Recessive Inheritance in Pedigree (*KrOt* p. 18/Task 8)

- a) II/2, II/3 both *Aa*
- b) 25%
- c) 2/3

d) $Aa \times Aa$, $Aa \times aa$, $aa \times aa$

Haemophilia A – Gonosomal (X-linked) Recessive Inheritance in Pedigree (*KrOt* p. 18/Task 10)

Risk of consanguineous marriage

(KrOt p. 21/Task 17)

a) PKU (AR) - risk: $1/2 \times 1/2 \times 1/4 = 1/16$

b) brachydactyly (AD) - risk $\cong 0$

c) haemophilia A (GR) - risk $\cong 0$

Consanguineous marriage of cousins - HPA (KrOt p. 21/Task 19)

Probability: $2/3 \times 1 \times 1/2 \times 1/2 \times 1/4 = 1/24$ (cca 4 %)