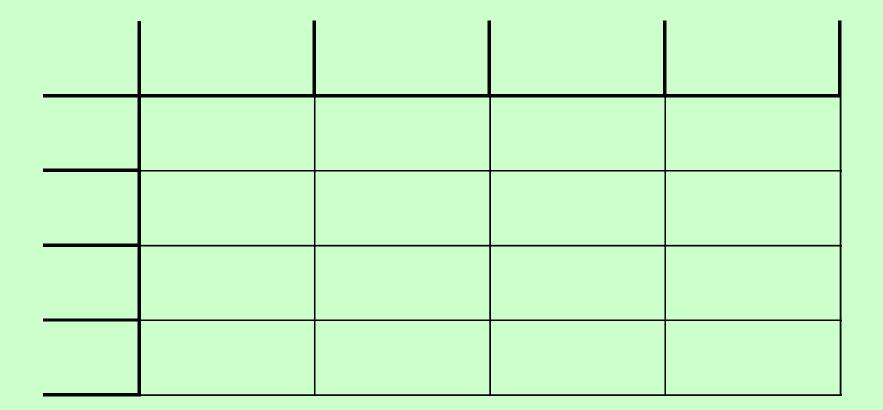
NONALLELIC GENE INTERACTIONS POLYGENIC INHERITANCE


1st year, 2nd semester, week 13 May 12, 13, and 14, 2008

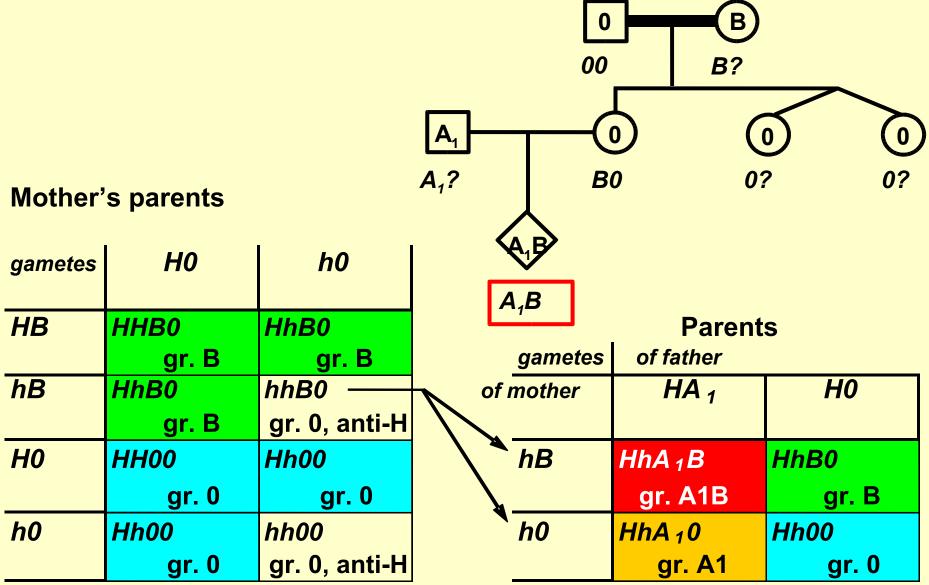
© Aleš Panczak, ÚBLG 1. LF a VFN

Albinism – coat colour in the rat Task 1/p. 95 KrOt

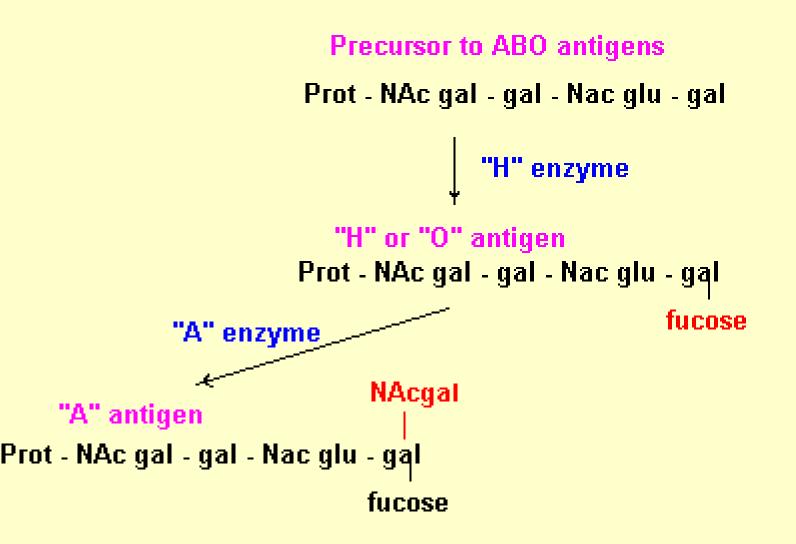
Ρ	♀ ¥ Shf	R X	♂ † BN	I
genotype	ccBB		CCbb	
phenotype	albino		brown	
gametes	сВ		Cb	
F ₁	(SH	IR x Bl	N)	
genotype	_	CcBb		
phenotype		black		
gametes	СВ	Cb	сВ	cb
F ₂	(SF	IR x BN)	
genotype				
phenotype				

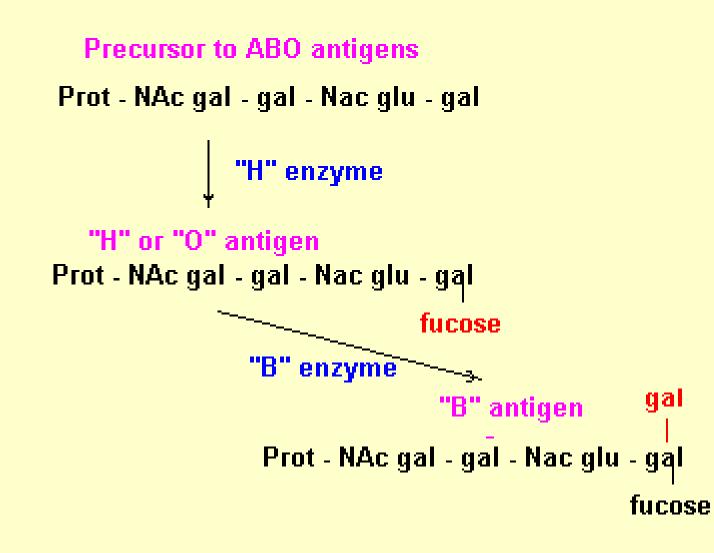
Albinism – coat colour in the rat

Albinism – coat colour in the rat

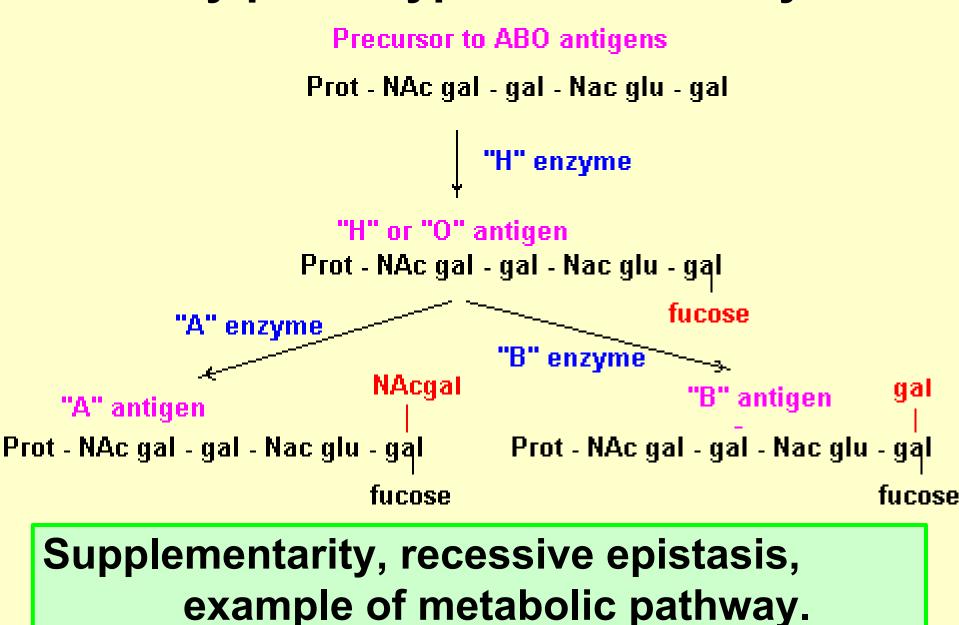

Albinism – coat colour in the rat

	BC	Bc	bC	bc
BC	BBCC	BBCc	BbCC	BbCc
	black	black	black	black
Bc	BBCc	BBcc	BbCc	Bbcc
	black	albino	black	albino
bC	BbCC	BbCc	bbCC	bbCc
	black	black	brown	brown
bc	BbCc	Bbcc	bbCc	bbcc
	black	albino	brown	albino

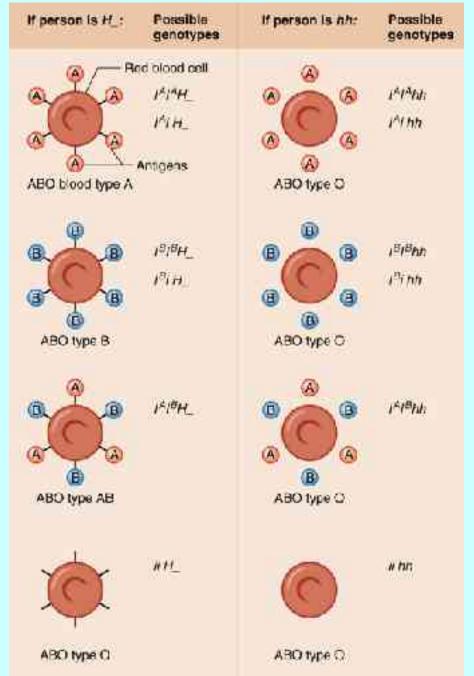

Albinism – coat o	olour in th	e rat ⊤	ask 1/p	o. 95 KrOt
Ρ	🕴 SHR	x 🛉 BN	J	
genotype	ccBB	CCbb		
phenotype	albino	brown		
gametes	сВ	Cb		
F ₁	(SHR	x BN)		
genotype	С	cBb		
phenotype	b	lack		
gametes	CB C	Cb cB	cb	
F ₂	(SHR	x BN)		
genotype	9 С-В- : 3 С	C-bb : 4 ccB-,	, ccbb	
phenotype	black br	own albino		6


Bombay phenotype in the AB0 system Task 3/p. 96 KrOt

7



Prot - NAc gal - gal - Nac glu - gal "H" enzyme "H" or "O" antigen Prot - NAc gal - gal - Nac glu - gal fucose


10

H and *AB0* loci as recessive epistasis

Homozygocy for alleles of one gene affects the expression of a second gene.

- H gene (*FUT1*) is epistatic to the AB0 gene.
- H substance is attached to the cell surface.
- *hh* genotype = no H substance (antigen).
- RBC of all AB0 genotypes appear as type 0.

Intero	actio	n of no	nallelic	aenes.					
Pheno ratios				notypes	Dup	olic	ity	ger	nes
F ₂ BC ₁	15: 3:		A ***	: aaaa	I			umulat omina	
	6: 2:	1 A*A* 1	* : A* aa +	+ aaA* : (aaaa			nulativ omina	
1:4		4:1 2:1	Regard	ess of orde		ithou	t do	lative ominal	nce
		AAAA						aaaa	
	F ₂		: 4					1	
13	BC			1	:	2	•	1	

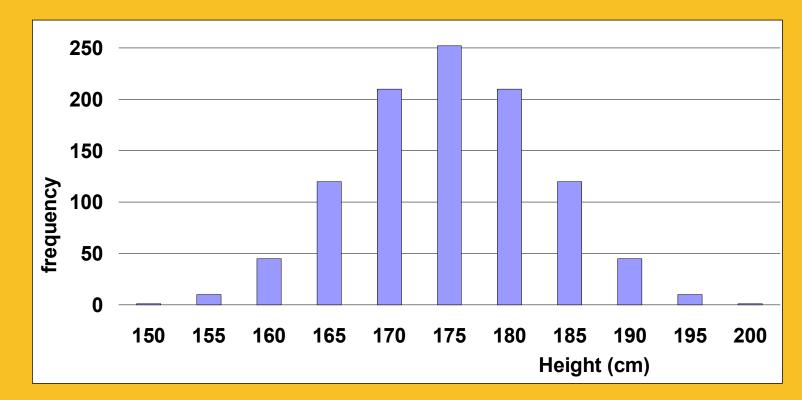
Segregation ratios **Pascal's triangl**

n	(1 + 1) ⁿ												Total						
1									1		1								2
2								1		2		1							4
3							1		3		3		1						8
4						1		4		6		4		1					16
5					1		5		10		10		5		1				32
6				1		6		15		20		15		6		1			64
7			1		7		21		35		35		21		7		1		128
8		1		8		28		56		70		56		28		8		1	256

Polygenic inheritance – body height Task 3/p. 93 KrOt

a) 200 cm

15


b) F_2 generation _{5 genes} with additive effect without dominance

No. of active alleles	0	1	2	3	4	5	6	7	8	9	10
Body height (cm)	150	155	160	165	170	175	180	185	190	195	200
Rate	1	10	45	120	210	252	210	120	45	10	1

g) 1 : 4 : 6 : 4 : 1	A ₁ a ₁ A ₂ a ₂	X	A ₁ a ₁ A ₂ a ₂	All of them
1:2:1	A ₁ A ₁ a ₂ a ₂	x	A ₁ a ₁ A ₂ a ₂	160 cm
1	A ₁ A ₁ a ₂ a ₂	X	A ₁ A ₁ a ₂ a ₂	= 2 active alleles
5	$A_1A_1a_2a_2$	X	a ₁ a ₁ A ₂ A ₂	ancies

Polygenic inheritance – body height Task 3/p. 93 KrOt

No. of active alleles	0	1	2	3	4	5	6	7	8	9	10
Body height	150	155	160	165	170	175	180	185	190	195	200
Rate	1	10	45	120	210	252	210	120	45	10	1

Recurrence risk estimates for diseases with multifactorial etiology

- **1.** Althoristin *reccur. risk* $_{I.dg.rel.} \doteq \sqrt{popul.incidence}$
- The recurrence risk to first-degree relatives is approximately the square root of the population risk (incidence) – Edwards' formula
- 3. The risk is sharply lower for second-degree than for firstdegree relatives, but it declines less rapidly for more remote relatives.
- 4. The risk is higher when more than one family member is affected for first-degree relatives, the value calculated from Edwards' formula is multiplied by 2, 3 etc.
- 5. The more severe the malformation, the greater the risk
- 6. If a multifactorial trait is more frequent in one sex than in the other, the risk is higher for relatives of patients of the less susceptible sex.
- 7. An increased risk when the parents are consanguineous (multiple factors with additive effects may be involved)
- 8 Strongly affected by the environmental factors

Neural tube defect reccurence risk Task 9/p. 94 KrOt

Congenital malformation with multifactorial ethiology and polygenic inheritance, population frequency ca 0,0009

Home work: Task 1/p. 92 KrOt Task 8/p. 94 KrOt

Recurrence risk estimates for diseases with multifactorial etiology

- 1. Although the disorder is obviously familial, there is no distinctive pattern of inheritance within family
- 2. The recurrence risk to first-degree relatives is approximately the square root of the population risk (incidence) Edwards' formula
- 3. The risk is sharply lower for second-degree than for firstdegree relatives, but it declines less rapidly for more remote relatives.
- 4. The risk is higher when more than one family member is affected for first-degree relatives, the value calculated from Edwards' formula is multiplied by 2, 3 etc.
- 5. The more severe the malformation, the greater the risk
- 6. If a multifactorial trait is more frequent in one sex than in the other, the risk is higher for relatives of patients of the less susceptible sex.
- 7. An increased risk when the parents are consanguineous (multiple factors with additive effects may be involved)
- 8 Strongly affected by the environmental factors